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Abstract


The ability to reliably map burned areas can greatly benefit those interested in the effects 


of fire treatment on economies, ecosystems, and air quality, among other things, and 


should be a priority for managers interested in making sound management decisions.  


Unfortunately, traditional per-pixel burn mapping techniques often fail to accurately 


characterize burned areas because they misclassify pixels or small groups of pixels.    In 


this research, we used object-based classification of Moderate Resolution Imaging 


Spectroradiometer (MODIS) data to map burned areas in the Flint Hills of Kansas and 


Oklahoma on a semi-daily basis during the burn seasons of 2003, 2004, 2005, and 2006.  


Though difficult to evaluate with traditional error-matrix methods, the accuracy of the 


burn maps was good (>90%) according to two alternative assessment methods.  This 


finding lends credibility to the technique, and suggests that object-based classification of 


burn scars with MODIS imagery is a viable tool for those interested in the effects of 


grassland fire regimes on both human and natural systems.


Keywords: burned area mapping, MODIS, object-based classification, grasslands
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1. Introduction 


Prescribed burning is critical to the sustainability and productivity of the tallgrass 


prairie ecosystem (Knapp & Seastedt, 1998).  Without it, precipitation regimes would 


allow shrubs and juniperous trees to replace native grasses (Collins & Steinauer, 1998).  


Considering the importance of the tallgrass prairie to ranching interests, its succession to 


woody vegetation is economically undesirable.  Other effects of fire on tallgrass prairie 


include its influence on the spatial and temporal heterogeneity of plant communities 


(Collins, 1992), and its ability to liberate nutrients contained in dead plant material in 


order to stimulate new growth (Hester et al., 1997).  Additionally, the effects of burning 


grasslands are closely linked to grazing practices (Hartnett et al., 1996), as grazing and 


fire are the two most important disturbances in tallgrass prairies (Collins & Steinauer, 


1998).  Finally, burn seasonality and the successional status of the burned grasslands 


must also be included in any discussion fire’s role in grassland ecosystems (Engle et al., 


1998).  


The effects of grassland burning are not limited to the grasslands themselves.  


Smoke from biomass burning can have serious health implications to human populations 


within the airshed of the burn.  Common gasses released during burning events include 


carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), oxides of nitrogen (NOX), and 


methane (CH4).  Though brief exposure to these pollutants carries little risk, chronic 


exposure can raise the risk of contracting certain cancers (Pope et al., 2002).  


More likely to affect human health, however, are the particulates less than 10 


micrometers (PM10 particles).  Particles of this size—and especially those ≈2.5 
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micrometers (PM2.5 particles)—are associated with a number of cardiopulmonary health 


conditions, including degraded lung function, pulmonary inflammation, arterial plaque 


deposits, vascular inflammation, and arteriosclerosis (Pope et al., 2002).  Furthermore, 


the effects of particle inhalation may persist despite a subsequent lack of exposure 


(Rothman & Ford, 1991).  


Understanding the large-scale effects of grassland burning on both human and 


ecological interests in the Flint Hills, as well as on both proximal and remote air quality, 


requires considerable knowledge of the spatial and temporal extent of the burned areas.  


Consequently, acquiring this knowledge should be a priority for those interested in 


making sound management decisions.  One way to accomplish this is through annual 


mapping of burned areas with remotely sensed imagery.


Despite the importance of burn mapping in grasslands, the utilization of remotely 


sensed image classification techniques for burn detection has been extensively applied 


only in forested and agricultural areas.  In fact, a general lack of rangeland fire 


monitoring in comparison to forested lands has been acknowledged (Rahman & Gamon, 


2004).  Moreover, few attempts at burn mapping in forested areas (e.g., Gitas et al., 2004; 


Mitri & Gitas, 2004a; Mitri & Gitas, 2006), and even fewer in grassland areas, have used 


an object-oriented classification approach.  


Object-based classification techniques have an important advantage over 


‘traditional’ techniques because they use homogenous objects as the basic unit of 


classification rather than individual pixels.  As such, they are sensitive to both spectral 


and geometric characteristics of an image, thereby increasing the amount of useful 
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information available for classification.  The geometric characteristics of an image can 


include, but are not limited to, shape, size, and geographic position relative to other 


objects.  Therefore, object-based classification is applicable in cases where these 


attributes may be useful, which is often the case in geographic studies (Jansen & Van 


Amsterdam, 1991; Lobo et al., 1996; Benz et al., 2004).  


The benefit of object-based classification to this research is its ability to account 


for individual pixels or small groups of pixels that are often misclassified using 


conventional, pixel-based approaches.  Mitri and Gitas (2004b) have noted this problem 


while classifying burns in forested areas, and we have observed it in the Flint Hills.  


Often, problems arise when single pixels representing small water bodies or cloud 


shadows are misclassified as burns, or, when burned areas are classified as unburned due 


to low pre-burn biomass in the burned area.  In these cases, there is often insufficient 


spectral contrast between the pre- and post-burn pixel, causing it to be misclassified as 


unburned.  Problems can also arise when sub-pixel patches of woody vegetation or rocky 


terrain affect the reflectance value of the entire pixel.  Often, these patches represent a 


small proportion of the pixel’s total area, and should therefore be classified as burned.  


Through segmentation, object-based techniques consider smaller pixels to be part of a 


larger object (a burn), which prevents the ‘peppered’ effect within otherwise homogenous 


classes, which is a common drawback of pixel-based classification techniques.  


Additionally, user-defined inputs prevent the segmentation from smoothing over patches 


within burns that may have actually gone unburned.
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Our purpose in this research, therefore, is to map burns in the Flint Hills region of 


Kansas and Oklahoma using object-based classification of MODIS imagery during the 


burn seasons in each year between 2003 and 2006, and to evaluate the technique’s 


accuracy.


2. Study Area


Our study area, the 1.6 million ha Flint Hills region of Kansas and Oklahoma and 


surrounding grasslands (Fig. 1), is the largest unplowed remnant of the once-extensive 


tallgrass prairie biome (Hartnett et al., 1996).  Warm-season perennial grasses such as big 


bluestem (Andropogon gerardii Vit.), indiangrass (Sorghastrum nutans [L.] Nash), little 


bluestem (Schizachyrium scoparium [Michx.] Nash—Andropogon scoparius  Michx.), 


and switchgrass (Panicum virgatum L.) dominate the area (Freeman, 1998), with a few 


locally common woody species and approximately 500 vascular plant species (Kuchler, 


1967; Freeman & Hulbert, 1985).  American bison (Bos bison [L.]) were the dominant 


grazers until European settlers introduced domestic cattle (Bos taurus [L.]) to the region 


in the late 1800s (Hartnett et al., 1996).


3. Data and Methods


The data for this study consisted of daily MODIS imagery collected between 


Julian days 090 and 110 in 2003, 2004, 2005, and 2006.  These dates represent the extent 


of a typical Flint Hills burning season.  The MODIS sensor was used because it passes 


over the study area daily, yet still provides adequate spatial resolution to detect most 


burns.  Bands 1 (red: 620-670 nm) and 2 (near-infrared: 841-876 nm) were downloaded 


from NASA’s Land Process Distributed Active Archive Center (LP DAAC) at a spatial 
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resolution of 250 m.  The red and near-infrared (NIR) wavelengths were used based on 


their widespread application to vegetation analysis (e.g., NDVI), because they were 


available at 250 m resolution, and because their wavelengths fall between 400 and 1000 


nm, which is the effective range for burn detection in grasslands (Rahman & Gamon, 


2004).  All scenes were pre-processed with the MODIS Reprojection Tool for 


rectification, extraction of reflectance values for the red and NIR bands, and conversion 


from HDF to TIFF files.  All scenes were then subset to include only the Flint Hills and 


immediately surrounding areas.  Due to cloud cover or resolution problems, some dates 


were excluded from further analysis (Table 1).  Images were considered too cloudy for 


analysis if more than half of the study area was obscured.


Following pre-processing, the images were classified using an object-based 


classification approach.  The first step in classification was segmentation (Fig. 2), where 


objects were defined as groups of adjacent pixels to be treated as single entities (Hay et 


al., 2001).  Here, eCognition 4.0 was used to segment each scene using a Fractal Net 


Evolution Approach (Baatz et al., 2004).  The FNEA builds objects with a bottom-up 


technique, starting with a single pixel and merging objects pairwise until they meet a user 


specified threshold defined in both spectral and geometric terms (Benz et al., 2004).  


Because this study centers on burned areas, we focused our segmentation on 


correctly identifying these as homogenous objects, and gave less consideration to the 


accurate segmentation of other land cover types.  The user-defined parameters that 


provided an optimal segmentation for burned area detection were a scale parameter of 65, 
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a shape factor of 0.25, and a compactness/smoothness ratio of 50/50.  In addition, both 


bands were assigned a weight of 1.


Once segmented, the objects in each image were classified into one of five 


classes: water, clouds, burned areas, cropland, and grassland.  Typically, users of object-


oriented classification approaches have a large number of object attributes (spectral, 


geometric, or textural) on which to base their classifications.  However, because object-


based classification was used here primarily to avoid the misclassification of single pixels 


and small groups of pixels, we used a simple standard nearest neighbor method.  Because 


spectral properties could identify burns more easily than geometric properties, the 


decision rule was applied only to within-object spectral reflectance—using geometric 


properties may cause burns to be confused with other classes due to the indistinct shape 


of the burned areas.  Next, all objects were assigned to the most probable class according 


to the standard nearest neighbor decision rule, even in cases where the likelihood of an 


object fitting into two classes was almost equally probable.  Finally, non-burn classes 


were excluded from the classification, yielding a burned area map for each sufficiently 


cloudless date between Julian Day 090 and 110 in each of the four years from 2003 to 


2006.  Some areas classified as burned were the result of larger cloud shadows or 


transition areas between large water bodies and grasslands.  These were removed from 


the maps manually based on their proximity to clouds or water bodies, respectively.


Accuracy assessment of burned areas is difficult due to a lack of corresponding 


datasets with which to compare the classification.  Obviously, traditional land cover maps 


do not show burned areas, and higher resolution images are usually unavailable for the 
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time period needed.  Consequently, two alternative methods were used to assess the 


accuracy of this classification.  First, the burn maps from 2006 were compared with 114 


GPS points denoting the whole or partial extent of 17 different burns.  Points were 


gathered between April 10 (Julian Day 100) and April 17 (Julian Day 107), 2006.  The 


classification would be considered accurate if a high percentage of these points correctly 


represented a burn as shown in the classification.  Furthermore, we assumed that the 


accuracy of the 2006 burn map represented the accuracy of the burn maps for the other 3 


years of the study.   


Though effective for comparing on-ground burn locations and dimensions to those 


produced by the classification, the above method fails to account for all inaccuracies that 


might exist within the classified burn maps.  Specifically, it has no mechanism by which 


to identify false positives and diagnose overestimation of burned areas.


To alleviate this problem, burned areas derived from the classification were also 


compared to a 2-meter color aerial photograph mosaic of Wabaunsee County acquired in 


2005.  This county was chosen to represent a subset of the MODIS image because it 


contained many areas of water, cropland, and forest, which we suspected of being 


inaccurately classified as burned in some cases.  Unburned grassland areas, however, are 


unlikely to be confused with burned grasslands due to their large spectral differences.  


Therefore, we evaluated the accuracy of the classification based on the percentage of 


classification-derived burned areas that corresponded to grassland areas as interpreted 


from the aerial photograph.  The percentage of correspondence would indicate the degree 


to which the burned area classification places burns accurately in grasslands, rather than 
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in other land cover types.  We assumed that the accuracy derived from the air photo 


mosaic would be representative of that over the entire study area, and for all other years.


4. Results


From the classification, we produced one map for each sufficiently cloudless day 


in each of the four years of the study in order to gauge the temporal variation (Fig. 3) of 


the burning throughout the burn season.  We also produced a composite burn map for 


each of the four years (Fig. 4) to indicate the spatial variation of the burning from year to 


year.  The 2004 composite burn map was compared to burned area estimates from the 


Bluestem Pasture Report (BPR), which is a voluntary survey given to landowners in 16 


Flint Hills counties (National Agricultural Statistics Service, 2004).  The BPR suggested 


that 64% of the grassland areas within those counties had been burned in 2004, while the 


estimate from the 2004 composite burn map reduces this number by half, to only 32%.  It 


should be noted that in 2003, 2005, and 2006, burned area estimates were 50, 49, and 28 


percent respectively.  This indicates a strong possibility that current survey-based 


techniques may overestimate actual burned areas.    


To evaluate the accuracy of the classification, we compared the GPS data 


gathered in the field during the 2006 burn season to the maps produced by the 


classification.  Of the 114 GPS points gathered, 11 did not correctly identify a mapped 


burn as observed in the field, indicating an accuracy of slightly better than 90%.  


However, 6 of the 11 incorrect points denoted two particular burns—one which was too 


small to be identified by the 6.25 ha MODIS pixels, and one that was several weeks old 


by Julian day 090.  Our technique was not expected to accurately map sub-pixel burns or 
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burns several weeks old; in fact, the old burn and the small burn were marked in the field 


specifically to test this aspect of the technique’s performance.  Therefore, with these 6 


points removed from the assessment, accuracy rose to slightly better than 95%.


Of the 17 different burns denoted by the GPS points, 14 were correctly classified 


on the burn maps, suggesting an accuracy of 82%.  However, as mentioned above, one of 


these burns was a sub-pixel burn, and the other was an old burn with a scar that had 


diminished by Julian day 090.  Exclusion of these two burns increased accuracy estimate 


to 94%.  


Comparison of the satellite-derived burn map to the aerial photograph indicated 


that 74% (126) of the 170 burns mapped in Wabaunsee County were located in grassland 


areas on the aerial photo mosaic.  Of those burns mapped in non-grassland areas, 19% 


(32) were mapped in ‘mixed’ areas of both cropland and grassland, 5% (9) in cropland 


areas, 1% (2) in forested areas, and <1% (1) was actually a small lake.  It is likely that the 


74% correspondence value actually underestimates the true accuracy of the classification 


by failing to account for the burned grasslands in mixed crop/grassland areas.  That is, the 


grassland portion of these mixed objects was likely burned.  With these included, the 


percentage of accurately classified burns is 93%.


5. Discussion and Conclusions


The results of this study suggest that burned grassland areas can be accurately 


mapped with object-based classification of MODIS imagery.  Despite the difficulty of 


assessing the accuracy of these burned area classifications, alternative techniques 


accounting for both possible types of error can be used.  In this case, the two assessment 
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techniques complimented each other—one accounted for false positives, the other for 


false negatives.  Taken together, they suggest an accuracy of over 90%.  This result 


should be viewed carefully, however, as some overestimation is likely to occur where 


burned grassland areas border cropland areas.


Also noteworthy is the inability of this technique to detect smaller burns, 


especially those smaller than a 6.25 ha MODIS pixel, or those that straddle the border 


between two pixels.  Though field observation suggests that this problem is not 


widespread in the relatively large grassland tracts of the Flint Hills, it could be a problem 


elsewhere.  With currently available sensor systems, however, an increase in spatial 


resolution would result in a decrease in temporal resolution, and cloud cover would 


further reduce the temporal density of the sample during the burn season.  Consequently, 


MODIS is the best sensor for this type of mapping despite its drawbacks.


The technique presented and evaluated in this study can be an invaluable tool for 


the management of tallgrass prairie in the Flint Hills of Kansas and Oklahoma, and likely 


applies to other grasslands as well—especially those where current estimates are not 


made or are unreliable.  Temporally, the resolution of MODIS imagery allows mapping 


on a daily basis, which is especially necessary in air quality models, yet its spatial 


resolution permits detection of all but the smallest burns.  


The other critical component of this technique, object-based classification, allows 


for homogenous burned areas to be classified as such while disallowing stray pixels from 


small water bodies and other very small areas that resemble burns from being classified 


as burned.  Though future work should further examine the use of this technique on other 
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types of grasslands, it clearly has the potential to improve management decisions 


regarding air quality, economies, and ecosystems that depend on grassland environments.


13







References


Baatz, M., U. Benz, S. Deghani, S. Heynen, A. Holtje, P. Hoffman, I. Ingenfelder, M. 


Mimler, M. Sohlbach, M. Weber, & G. Willhauck.  (2004).  Ecognition User’s 


Guide v. 4.0.  Definiens, A. G. Munich.


Benz, U. P., P. Hoffman, G. Willhauck, I. Lingenfelder, & M. Heynen.  (2004).  Multi-


resolution, object oriented fuzzy analysis of remote sensing data for GIS-ready 


information.  ISPRS Journal of Photogrammetry & Remote Sensing, 58, 239-258.


Collins, S. L.  (1992).  Fire frequency and community heterogeneity in tallgrass prairie 


vegetation.  Ecology, 73, 2001-2006.


Collins, S. L., & E. M. Steinauer.  (1998).  Disturbance, diversity, and species 


interactions in tallgrass prairie.  In A. K. Knapp, J. M. Briggs, D. C. Hartnett, & 


S. L. Collins, (eds.)  Grassland dynamics: Long-term ecological research in 


tallgrass prairie.  (pp. 140-156).  New York: Oxford University Press.  


Engle, D. M., R. L. Mitchell, & R. L. Stevens.  (1998).  Late growing-season fire effects 


in mid-successional tallgrass prairies.  Journal of Range Management, 51, 115-


121.


Freeman, C. C., & L. C. Hulbert.  (1985).  An annotated list of the vascular flora of 


Konza Prairie Research Natural Area, Kansas.  Transactions of the Kansas 


Academy of Science, 88, 84-115.


Freeman, C. C.  (1998).  The flora of Konza Prairie: A historical review and 


contemporary patterns.  In A. K. Knapp, J. M. Briggs, D. C. Hartnett, & S. L. 


14







Collins, (eds.)  Grassland dynamics: Long-term ecological research in tallgrass 


prairie.  (pp. 69-80).  New York: Oxford University Press.


Gitas, I. Z., G. H. Mitri, & G. Ventura.  (2004).  Object-based classification for burned 


area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery.  Remote 


Sensing of Environment, 92, 409-413.


Hartnett, D. C., K. R. Hickman, & L. E. F. Walter.  (1996).  Effects of bison grazing, fir, 


and topography on floristic diversity in tallgrass prairie.  Journal of Range 


Management, 49, 413-420.


Hay, G. J., D. J. Marceau, P. Dube, & A. Bouchard.  (2001).  A multiscale framework for 


landscape analysis: object-specific analysis and upscaling.  Landscape Ecology, 


16, 471-490.


Hester, J. W., T. L. Thurow, & C. A. Taylor, Jr.  (1997).  Hydrologic characteristics of 


vegetation types as affected by prescribed burning.  Journal of Range 


Management, 50, 199-204.


Jansen, L. L. F., & J. D. Van Amsterdam.  (1991).  An object based approach to 


the classification of remotely sensed images.  Proceedings of the International 


Geoscience and Remote Sensing Symposium (IGARRS), 29, 1171-1176.


Knapp, A. K., & T. R. Seastedt.  (1998).  Grasslands, Konza Prairie, and long-term 


ecological research.  In A. K. Knapp, J. M. Briggs, D. C. Hartnett, & S. L. 


Collins, (eds.)  Grassland dynamics: Long-term ecological research in tallgrass 


prairie.  (pp. 3-15).  New York: Oxford University Press.


15







Kuchler, A. W.  (1964).  Potential natural vegetation of the coterminous United States.  


American Geographical Society Special Publication, 36.


Lobo, A., O. Chic, & A. Casterad.  (1996).  Classification of Mediterranean crops 


with multisensor data: per-pixel versus per-object statistics and image 


segmentation. International Journal of Remote Sensing, 17, 49-55.


Mitri, G. H., & I. Z. Gitas.  (2004a).  A performance evaluation of a burned area object-


based classification model when applied to topographically and non-


topographically corrected TM imagery.  International Journal of Remote Sensing, 


25, 2863-2870.


Mitri, G. H., & I. Z. Gitas.  (2004b).  A semi-automated object-oriented model for burned 


area mapping in the Mediterranean region using Landsat TM imagery.  


International Journal of Wildland Fire, 13, 367-376.


Mitri, G. H., & I.Z. Gitas.  (2006).  Fire type mapping using object-based classification of 


Ikonos imagery.  International Journal of Wildland Fire, 15, 457-462.


National Agriculture Statistics Service. 2004.  Bluestem Pasture Special Press Release.  


http://www.nass.usda.gov/ks/blue/bluest04.pdf.


Pope, C. A. III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, & G. D. 


Thurston.  (2002).  Lung cancer, cardiopulmonary mortality, and long-term 


exposure to fine particulate air pollution.  Journal of the American Medical 


Association, 287, 1132-1141.


16







Rahman, A. F., & J. A. Gamon.  (2004).  Detecting biophisical properies of a semi-arid 


grassland and distinguishing burned from unburned areas with hyperspectral 


reflectance.  Journal of Arid Environments, 58, 597-610.


Rothmann, N. & D. Ford.  (1991).  Pulmonary function and respiratory symptoms in 


wildland firefighters.  Journal of Occupational Medicine, 33, 1163-1167. 


17







Table Titles


Table 1:  Julian days with a useable image by study year.


Figure Captions


Fig. 1:  Study area.  Shaded area indicates the extent of the MODIS images used.


Fig. 2:  Pre and Post-segmentation images showing the effect of the segmentation process 


on the MODIS images.


Fig. 3:  Temporal variation in burning by year.  Lulls indicate periods with unuseable 


images due to cloud cover or resolution problems.


Fig. 4:  Burn maps by year.  Maps are a composite of all burns detected during the burn 


season.
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Table 1:  Julian days with a useable image by study year.  Useable images are denoted 


with a U.  Imgaes that were unuseable are denoted with an C (cloudy) or a R (resolution 


problems). 


Julian Day 2003 2004 2005 2006
90 U R C U
91 U R U C
92 U U U C
93 C U R U
94 C C U R
95 C U C C
96 C C C C
97 C C R C
98 C C C C
99 U U C R
100 U C C C
101 U C C C
102 U U C U
103 U C C U
104 R C U C
105 C U C C
106 C C Missing U
107 C R U U
108 R C C U
109 C C C U
110 C C C U
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